Relationship between protein rotational dynamics and phosphoenzyme decomposition in the sarcoplasmic reticulum Ca-ATPase.
نویسندگان
چکیده
We have investigated the role of large-scale protein rotational mobility in the reaction mechanism of the Ca-ATPase in sarcoplasmic reticulum using conditions that have previously been found to inhibit selectively phosphoenzyme decomposition, i.e. 1) partial delipidation (by detergent extraction or phospholipase treatment) and 2) the addition of nonaqueous solvents (dimethyl sulfoxide, glycerol, and sucrose). Using saturation-transfer electron paramagnetic resonance to probe the microsecond rotational motion of the spin-labeled Ca-ATPase, we find that both calcium-dependent ATPase activity and protein rotational mobility decrease in parallel, suggesting that protein mobility is important to the enzymatic step(s) involving phosphoenzyme decomposition. Using conventional EPR to measure the nanosecond rotational dynamics of spin-labeled lipid hydrocarbon chains, we find that neither the removal of lipid nor the addition of nonaqueous solvents significantly affects the lipid dynamics. We propose that the physical mode of inactivation under these conditions is the reduction in protein mobility through enforced protein-protein interactions, the result of which is a reduction in a motion essential for Ca-ATPase activity.
منابع مشابه
Microsecond rotational dynamics of spin-labeled Ca-ATPase during enzymatic cycling initiated by photolysis of caged ATP.
We have measured the microsecond rotational motions of the sarcoplasmic reticulum (SR) Ca-ATPase as a function of enzyme-specific ligands, including those that induce active calcium transport. We labeled the Ca-ATPase with a maleimide spin probe and detected rotational dynamics using saturation-transfer electron paramagnetic resonance (ST-EPR). This probe's ST-EPR spectra have been shown to be ...
متن کاملEffects of vanadate on the rotational dynamics of spin-labeled calcium adenosinetriphosphatase in sarcoplasmic reticulum membranes.
We have studied the effects of vanadate on the rotational motion of the calcium adenosine-triphosphatase (Ca-ATPase) from sarcoplasmic reticulum (SR), using saturation-transfer electron paramagnetic resonance (ST-EPR). Vanadate has been proposed to act as a phosphate analogue and produce a stable intermediate state similar to the phosphoenzyme. This study provides evidence about the physical st...
متن کاملTemperature dependence of rotational dynamics of protein and lipid in sarcoplasmic reticulum membranes.
We have investigated the relationship between function and molecular dynamics of both the lipid and the Ca-ATPase protein in sarcoplasmic reticulum (SR), using temperature as a means of altering both activity and rotational dynamics. Conventional and saturation-transfer electron paramagnetic resonance (EPR) was used to probe rotational motions of spin-labels attached either to fatty acid hydroc...
متن کاملThe physical mechanism of calcium pump regulation in the heart.
The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of ...
متن کاملPoges 387-394 ACYLPHOSPHATASE STIMULATES Ca 2+ TRANSPORT AND Ca2+-DEPENDENT ATPase ACTIVITY IN CARDIAC SARCOPLASMIC RETICULUM
Acylphosphatase purified from heart muscle actively hydrolyzes the phosphoenzyme intermediate of cardiac sarcoplasmic reticulum Ca2+-ATPase. This effect was evident with acylphosphatase concentrations (up to 100 units/mg sarcoplasmic reticulum .protein) that fall within the physiological range, and the low value of the apparent Kin, on the order of 10t M, suggests a high affinity towards this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 263 19 شماره
صفحات -
تاریخ انتشار 1988